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Abstract

A class of decentralized tracking-type games is considered for large population multi-agent systems (MAS). The agents are described by
stochastic discrete-time auto-regressive models with exogenous inputs (ARX models), and coupled together through their individual dynamics
and performance indexes by terms of the unknown population state average (PSA). The performance index of each agent to minimize is a
stochastic long term averaged group-tracking-type functional, in which there is a nonlinear term of the unknown PSA. The control law is
decentralized and implemented via the Nash certainty equivalence principle. By probability limit theory, under mild conditions it is shown
that: (a) the estimate of the PSA is strongly consistent; (b) the closed-loop system is stable almost surely, and the stability is independent of
the number N of agents; (c) the decentralized control law is an asymptotic Nash equilibrium almost surely or in probability according to the
property of the nonlinear coupling function in the performance indexes.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, a class of individual–population interacting
stochastic multi-agent systems (MAS) is considered, which has
a wide practical background in engineering (Huang, Caines, &
Malhamé, 2004a), biological (Erdmann, Ebeling, & Mikhailov,
2005; Mach & Schweitzer, 2003), social and economic systems
(Erickson, 1995; Huang, Caines, & Malhamé, 2007). This class
of MAS has the following prominent characteristics: (a) Each
agent has an integrated ability of sensing, decision-making and
communicating, also a control objective of its own interest,
so it can be viewed as a rational decision-maker. (b) Interac-
tions between the individual states and population state average
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(PSA) exist in both agents’ dynamics and control objectives.
(c) Dynamics of agents are often influenced by stochastic dis-
turbances. (d) The number N of agents is usually very large.
Though individual agent behaves as a stochastic process, the
whole system often takes on certain deterministic pattern at the
macroscopic level, therefore the asymptotic property of the sys-
tem is an interesting and important issue to be investigated when
N increases to infinity. This class of systems belongs to large
population MAS (Altman, Basar, & Srikant, 2002; Green, 1984;
Morale, Capasso, & Oelschläger, 2005) and can be viewed as
large scale coupled stochastic systems. The optimization of
such systems can be viewed as a stochastic distributed game.

Under the game-theoretic framework, the optimization of
coupled systems can be divided into two categories: central-
ized control (Engwerda, 2000; Lim & Gajic, 1999; Mukaidani,
2006; Mukaidani & Xu, 2004; Weeren, Schumacher, &
Engwerda, 1999) and decentralized control (Bauso, Giarré,
& Pesenti, 2006; Huang, Caines, & Malhamé, 2003, 2004b,
2007; Li & Zhang, 2006, 2007a; Ma, Li, & Zhang, 2007)
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Centralized control refers to the case where the states (or out-
puts) of all agents are available for each agent to design its
control law, while decentralized control refers to the case where
only local states (under certain circumstances, including those
in its sensing or communicating neighborhood) are available.
In MAS, there are often no central control stations, and agents
have only limited sensing ability. Therefore, the control laws
for MAS are usually required to be decentralized. Bauso et al.
(2006) considered consensus protocol design of cost-coupled
deterministic MAS described by non-coupled first order scalar
differential equations. A receding horizon method was used
to decouple the indexes, and construct the approximate op-
timal strategies. Huang et al. (2003, 2004b, 2007) and Li
and Zhang (2007a) considered the decentralized control of cost-
coupled stochastic MAS described by non-coupled stochastic
differential equations. Inspired by the work of Huang et al.
(2003, 2004b, 2007) on deterministic indexes, Li and Zhang
(2007a) investigated the stochastic index case where each agent
possesses a stochastic linearly coupled quadratic performance
index. Based on the introduced notions of asymptotic Nash
equilibria in the probabilistic sense, a decentralized control
law was given and shown to be asymptotically optimal almost
surely in the sense of Nash equilibrium as the number N of
agents increases to infinity. But, how to get the convergence
rate of the sub-optimal index values to the optimal one is still
open, irrespective of the performance indexes being determin-
istic (Huang et al., 2003, 2004b, 2007) or stochastic (Li &
Zhang, 2007a). This is worth studying since the convergence
rate is a measure of evaluating the performance of the decen-
tralized control law.

In this paper, the decentralized game is investigated for
individual–population interacting stochastic MAS. Compared
with the previous works, this paper is characterized by the
following features: (a) The dynamic equation of each agent is
described by a discrete-time ARX model, and coupled with
each other by the PSA. Different from the non-coupled dynam-
ics considered in Li and Zhang (2007a), here the closed-loop
stability is closely dependent on the convergence of the esti-
mate of the PSA. (b) The performance indexes of the agents
are coupled together nonlinearly, which may result in more
complex population behaviors in the closed-loop system. Un-
der mild conditions, we not only prove that the decentralized
control law is asymptotically optimal almost surely, but also
obtain the rate of the associated performance indexes converg-
ing to the corresponding optimal values. It is shown that when
the nonlinear coupling function is Hölder continuous with
exponent �, the convergence rate is O(1/N�) as N increases
to infinity. Some preliminary results of this work have been
reported in Li and Zhang (2007b).

The remainder of this paper is organized as follows. In
Section 2, the individual performance based optimization prob-
lem is formulated. In Section 3, a detailed design procedure
of the decentralized control law is presented, which is based
on the estimate of the PSA and the so-called Nash certainty
equivalence (NCE) principle. In Section 4, by using probabil-
ity limit theory, the stability and optimality of the closed-loop
system are analyzed. In Section 5, two numerical examples are

given to illustrate our results. In Section 6, some concluding
remarks and further research topics are discussed.

The following notations will be used throughout this paper.
Rm denotes the set of all m-dimensional real column vectors;
Rm×d denotes the set of all m × d dimensional real matrices;
Im denotes the m-dimensional unit matrix. For a given vector or
matrix X, XT denotes its transpose; ‖X‖ denotes the Euclidean-
norm of X; when X is square, �(X) denotes its spectral radius;
tr(X) denotes its trace; �max(X) denotes the maximum eigen-
value of X. For a given random variable (r.v.) � on a probability
space (�,F, P ), E(�) denotes the mathematical expectation
of �. For a given class A of sets, �(A) denotes the �-algebra
generated by A. For a family {��, � ∈ �} of Rm-valued r.v.s,
�(��, � ∈ �) denotes the �-algebra �({�� ∈ B}, B ∈ Bm, � ∈
�), where Bm denotes the m-dimensional Borel sets. For a
sequence {Ft , t �0} of non-decreasing �-algebras and a se-
quence {�(t), t �0} of r.v.s, we say �(t) is adapted to Ft or
{�(t),Ft } is an adapted sequence, if for any t �0, �(t) is Ft

measurable.

2. Preliminaries and problem formulation

We denote a system of N agents by SN , and the dynamic
equation for the ith agent is given by

xN
i (t + 1) = gi(x

N
i (t), t) + uN

i (t) + �xN(t) + 	i (t + 1),

t �0, (1)

where xN
i ∈ Rm, uN

i ∈ Rm are state and control input, respec-

tively; xN(t)�(1/N)
∑N

j=1 xN
j (t) is the PSA; 	i (t) ∈ Rm is

the random noise; gi(·, ·) : Rm × R → Rm is a Borel mea-
surable function; � ∈ Rm×m is called the coupling parameter
matrix satisfying �(�) < 1.

For model (1), we have the following assumptions:
(A1) {{	i (t),F

i
t }, i�1} is a family of independent mar-

tingale difference sequences defined on a probability space
(�,F, P ) with the following properties:

sup
t �0

E[‖	i (t)‖2|Fi
t−1] < ∞ a.s.,

lim
n→∞

1

n

n∑
t=0

	i (t)	
T
i (t) = R� a.s., (2)

where Fi
t��(	i (s), 0�s� t), R�∈Rm×m is an m-dimen-

sional nonnegative definite matrix.
(A2) {xN

i (0), 1� i�N, N �1} is independent of {{	i (t),

Fi
t }, i�1}, with a common mathematical expectation

x0�Ex1
1(0) < ∞.

The performance index of agent i is described by

JN
i (uN

i , uN
−i ) = lim sup

n→∞
1

n

n∑
t=0

‖xN
i (t + 1) − 
(xN(t))‖2, (3)

where uN
−i = (uN

1 , . . . , uN
i−1, uN

i+1, . . . , u
N
N), 
(·) : Rm → Rm

is a Borel measurable function.

Remark 1. The model (1) with index (3) has a wide back-
ground in biological and engineering systems. The Brownian



Author's personal copy

T. Li, J.-F. Zhang / Automatica 44 (2008) 713 – 725 715

agent swarm systems (Erdmann et al., 2005; Mach &
Schweitzer, 2003) are such examples, where the acceleration
of agent i depends on not only its own state variables (e.g. posi-
tion ri , velocity vi , energy ei), control ui , Gaussian white noise
	i , but also the population position average (1/N)

∑N
j=1 rj .

The dynamic equations are coupled together via the population
position average (1/N)

∑N
j=1 rj . Other index-coupled exam-

ples can be found in wireless communication networks (Huang
et al., 2004a) and production output adjustment problems
(Huang et al., 2007). In the former example, the changing rate
of the received power pi for user i depends on pi , control ui ,
random noise 	i . Each user makes its own strategy ui to ensure
the signal-to-interference-ratio to be around a target level �.
This can be formulated by the following coupled index group:

lim sup
n→∞

1

n

n∑
t=0

⎡⎣pi(t) − �

⎛⎝ 1

N

N∑
j=1

pj (t) + �

⎞⎠⎤⎦2

,

i = 1, 2, . . . , N .

Here � is the constant background noise intensity. In the latter
example, the changing rate of production output level xi of firm
i depends on control ui and random noise 	i . Each firm makes
its strategy ui to ensure its production level to be approximately
proportional to the price provided by the current market. This
can be formulated by the following coupled index group:

lim sup
n→∞

1

n

n∑
t=0

[xi(t) − 
p]2, i = 1, 2, . . . , N ,

where p = � − (�/N)
∑N

j=1 xj (t) is the price depending on

the production level average (1/N)
∑N

j=1 xj (t), and 
, �, � are
positive constants.

Remark 2. The model (1) is a discrete-time first order nonlin-
ear ARX model, where xi is the output, ui is the control input,
	i is the noise input. Nonlinear ARX models can be found in
the analysis and design of many discrete-time systems (Chen
& Tsay, 1993; De Nicolao, Magni, & Scattolini, 1997; Fan &
Yao, 2005).

For convenience of citation, for agent i, we denote the global-
measurement-based admissible control set by

UN
g,i�

⎧⎨⎩u |u(t) is adapted to �

⎛⎝ N⋃
j=1

�(xN
j (s), 0�s� t)

⎞⎠⎫⎬⎭ ,

local-measurement-based admissible control set by

UN
l,i�{u | u(t) is adapted to �(xN

i (s), 0�s� t)},
and admissible control set by UN

i . The so-called decentral-
ized game means that agent i synthesizes uN

i only based on
the local measurement (i.e. UN

i = UN
l,i) to minimize its index

JN
i (uN

i , uN
−i ).

For investigating the asymptotic property of the whole system
when N → ∞, we have to analyze a sequence of systems
{SN, N �1}. To do so, we denote a control group of SN by

UN = {uN
i , 1� i�N}, and its corresponding index group by

JN = {JN
i (uN

i , uN
−i ), 1� i�N}.

Before designing the decentralized control law for (1), we
present the optimal index value for each agent under the cen-
tralized control law. To this end, we need the following lemma.

Lemma 2.1 (Chen and Guo, 1991). Let {W(t),Ft } be a ma-
trix martingale difference sequence, {M(t),Ft } an adapted
sequence of random matrices, ‖M(t)‖ < ∞, ∀t �0. If

sup
t �0

E[‖W(t)‖2|Ft−1] < ∞ a.s.,

then for any given � > 0,

n∑
t=0

M(t)W(t + 1) = O

⎛⎝( n∑
t=0

‖M(t)‖2

)1/2+�
⎞⎠ a.s.

Theorem 2.1. For system (1) with index (3), if Assump-
tions (A1) and (A2) hold, then under any control group
UN = {uN

i ∈ UN
g,i, 1� i�N}, the corresponding index group

JN = {JN
i (uN

i , uN
−i ), 1� i�N} has the following property:

JN
i (uN

i , uN
−i )� tr(R�) a.s., i = 1, 2, . . . , N .

Moreover, under the control group

uN
i (t) = 
(xN(t)) − gi(x

N
i (t), t) − �xN(t), t �0,

i = 1, 2, . . . , N , (4)

the corresponding index group satisfies:

JN
i (uN

i , uN
−i ) = tr(R�) a.s., i = 1, 2, . . . , N .

Proof. Denote FN
0 = �(xN

i (0), i = 1, 2, . . . , N). Then, from
Assumptions (A1) and (A2), it is known that {	i (t), �(FN

0 ∪
(
⋃N

j=1 F
j
t ))} is a martingale difference sequence, and

sup
t �0

E

⎡⎣‖	i (t)‖2|�
⎛⎝FN

0 ∪
⎛⎝ N⋃

j=1

Fi
t−1

⎞⎠⎞⎠⎤⎦< ∞ a.s.,

lim
n→∞

1

n

n∑
t=0

	i (t)	
T
i (t) = R� a.s.

Noticing that uN
i ∈ UN

g,i , from model (1) we have xN
i (t) is

adapted to �(FN
0 ∪ (

⋃N
j=1 F

j
t )), uN

i (t) is adapted to �(FN
0 ∪

(
⋃N

j=1 F
j
t )), xN(t) is adapted to �(FN

0 ∪(
⋃N

j=1 F
j
t )), ∀t �0.

Thus, similar to Chen and Guo (1991, Theorem 3.6), by
Lemma 2.1 we can get Theorem 2.1. �

From Theorem 2.1, it can be seen that the optimal index
value of each agent can attain the lower bound tr(R�), provided
that the states of all agents are available for the control design.
However, due to information restriction, the decentralized con-
trol law may only make the indexes sub-optimal. Below we
will present some notions of asymptotic Nash equilibria in the
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probabilistic sense to quantitatively describe the sub-optimality
of the control groups with respect to the stochastic indexes.
First we present the notion of �-Nash equilibrium with respect
to deterministic indexes for comparison.

Definition 2.1 (Baser and Olsder, 1982). A control group
{uN

i ∈ UN
i , 1� i�N} is called an �-Nash equilibrium with

respect to the index group {Ji, 1� i�N} if there exists � > 0
such that for any 1� i�N ,

Ji(u
N
i , uN

−i )� inf
vi∈UN

g,i

Ji(vi, u
N
−i ) + �.

Below we give the definitions of asymptotic Nash equilibria
in the probabilistic sense.

Definition 2.2. For system (1), a sequence of control groups
{UN = {uN

i ∈ UN
i , 1� i�N}, N �1} is called an asymptotic

Nash equilibrium in probability with respect to the correspond-
ing sequence of index groups {JN = {JN

i , 1� i�N}, N �1},
if for any � > 0, � > 0, there exists M > 0 such that for any
N > M ,

P

{
max

1� i �N

{
JN

i (uN
i , uN

−i ) − inf
vi∈UN

g,i

JN
i (vi, u

N
−i )

}
��

}
��.

(5)

Definition 2.3. For system (1), a sequence of control groups
{UN = {uN

i , 1� i�N}, N �1} is called an almost sure asymp-
totic Nash equilibrium with respect to the corresponding se-
quence of index groups {JN ={JN

i , 1� i�N}, N �1}, if there
exists a sequence of non-negative r.v.s {�N(	), N �1} on the
probability space (�,F, P ), such that �N → 0 a.s., as N →
∞, and for sufficiently large N,

JN
i (uN

i , uN
−i )� inf

vi∈UN
g,i

JN
i (vi, u

N
−i ) + �N a.s.,

i = 1, 2, . . . , N . (6)

Remark 3. From Theorem 2.1, it can be seen that

inf
vi∈UN

g,i

JN
i (vi, u

N
−i ) = tr(R�) a.s.

Therefore, the inf
vi∈UN

g,i
JN

i (vi, u
N
−i ) in (5) and (6) can be

replaced with the optimal index value based on global measure-
ment tr(R�). An asymptotic Nash equilibrium in probability is
to say that for any given � > 0, when the number N of agents
is sufficiently large, there is a large probability to ensure that
the control group UN = {uN

i , 1� i�N} is an �-Nash equilib-
rium with respect to the index group JN = {JN

i , 1� i�N}. It
can be interpreted intuitively as, if agent i changes its strategy
uN

i unilaterally even based on global measurement information,
the probability of its gaining a cost reduction by � is still very
small.

An almost sure asymptotic Nash equilibrium is to say
that when N is sufficiently large, the control group UN =
{uN

i , 1� i�N} is an �N -Nash equilibrium with respect to

JN = {JN
i (uN

i , uN
−i ), 1� i�N} with probability 1. The index

JN
i (uN

i , uN
−i ) of agent i deviates from the optimal index value

based on global measurement tr(R�) by only a small quantity
�N , which is convergent to zero almost surely as N → ∞.

For the above two notions, we have the following two the-
orems on their relationship, whose proofs are straightforward,
and so, omitted here.

Theorem 2.2. If a sequence of control groups {UN =
{uN

i , 1� i�N}, N �1} is an almost sure asymptotic Nash
equilibrium with respect to the corresponding sequence of in-
dex groups {JN = {JN

i , 1� i�N}, N �1}, then {UN, N �1}
is also an asymptotic Nash equilibrium in probability with
respect to {JN, N �1}.

Theorem 2.3. If a sequence of control groups {UN =
{uN

i , 1� i�N}, N �1} is an asymptotic Nash equilibrium
in probability with respect to the corresponding sequence
of index groups {JN = {JN

i , 1� i�N}, N �1}, then for any
sub-sequence of {UN = {uN

i , 1� i�N}, N �1}, there exists

a sub-sequence {UNk = {uNk

i , 1� i�Nk}, k�1}, which is
an almost sure asymptotic Nash equilibrium with respect to
{JNk = {JNk

i , 1� i�Nk}, k�1}.

If the sequence of control groups {UN = {uN
i ∈ UN

i =
UN

l,i , 1� i�N}, N �1} of the system sequence {SN, N �1} is
an almost sure (in probability) asymptotic Nash equilibrium
with respect to {JN = {JN

i , 1� i�N}, N �1}, then we call it
almost surely (in probability) asymptotically optimal decentral-
ized control in the sense of Nash equilibrium.

Remark 4. Unlike single-agent systems (one-player games), in
multi-player games the optimality may have different meanings
for different problems. For instance, Nash equilibrium is a spe-
cific form of “optimality” often considered in a non-cooperative
game, which says that one player cannot reduce its cost by al-
tering his strategy unilaterally (Baser & Olsder, 1982); while
in a cooperative game, what is often adopted is Pareto optimal-
ity, which says that no other joint strategy can reduce the cost
of at least one player, without increasing the cost of the others.
In this paper, we will focus on the non-cooperative case, and
design a decentralized control law to achieve a Nash equilib-
rium (asymptotically). For (stochastic) cooperative games, the
readers are referred to Yeung and Petrosyan (2006).

3. Decentralized control design

In the centralized control law (4), the control of agent i de-
pends on the PSA xN . Since in general, uN

i does not belong
to the admissible control set UN

l,i , to ensure the control law de-
signed to be decentralized, we will adopt the methodology of
the NCE principle (Huang, Malhamé, & Caines, 2006; Li &
Zhang, 2007a). Firstly we construct an estimate f (t) of the
PSA with the following property: if every agent takes f (t) as
the estimate of the PSA, and according to f (t), makes the op-
timal decision, then the expectation of the closed-loop PSA is
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just f (t) or convergent to it when N increases to infinity. Sec-
ondly if the f (t) with the above property indeed exists, then
we can construct the decentralized control law by using f (t)

instead of xN(t).
Based on the NCE principle, we now design the decentralized

control law.
The auxiliary equation of agent i is given by

x̂N
i (t + 1) = gi (̂x

N
i (t), t) + ûN

i (t) + �f (t)

+ 	i (t + 1), t �0, i = 1, 2, . . . , N , (7)

with a tracking-type performance index:

JN
i (̂uN

i ) = lim sup
n→∞

1

n

n∑
t=0

‖x̂N
i (t + 1) − 
(f (t))‖2.

In this case, the optimal control is obviously

ûN
i (t) = 
(f (t)) − gi (̂x

N
i (t), t) − �f (t). (8)

Substituting control (8) into model (7), we have

Ex̂N
i (t + 1) = 
(f (t)), Ex̂N

i (0) = x0. (9)

As mentioned above, the mathematical expectation of the
closed-loop PSA ought to be f (t), that is

1

N

N∑
j=1

Ex̂N
j (t) = f (t), t �0. (10)

Therefore, the unique solution of the auxiliary system (9) and
(10) can be used as the estimate of the PSA. We denote it by
f ∗(t), which is iteratively given by

f ∗(t + 1) = 
(f ∗(t)), t �0, f ∗(0) = x0. (11)

By (8) and the NCE principle, the control law for agent i can
be taken as

u0
i (t) = 
(f ∗(t)) − gi(x

N
i (t), t) − �f ∗(t). (12)

Here and hereafter, the superscript N of u0N

i (t) is omitted for
conciseness of expression. Comparing (4) with (12), it can be
seen that xN in (12) is replaced by f ∗ for control design.
Since f ∗ given by (11) is only related to the nonlinear coupling
function 
(·) and the expectation of initial states, independent
of the states of agents in real time, u0

i (t) indeed belongs to UN
l,i ,

that is, the control law (12) is decentralized.
Substituting (12) into (1) leads to the closed loop equation

of agent i,

xN
i (t + 1) = 
(f ∗(t)) − �f ∗(t) + �xN(t) + 	i (t + 1)

= 
(f ∗(t)) + ��N(t) + 	i (t + 1), (13)

where �N(t)=xN(t)−f ∗(t) is the estimation error of the PSA.
From above, it can be seen that the control design procedure

has two steps: (a) construct the estimate f ∗(t) for the PSA;
(b) construct the decentralized controllers (12) by using f ∗(t)
instead of the PSA xN(t).

For the decentralized control law designed and the resulting
closed-loop system, the following three questions are naturally
put forward:

(i) Whether the estimate of the PSA is strongly consistent,
or whether �N(t) converges to zero with respect to some
metric almost surely, as N → ∞.

(ii) Whether the closed-loop system is stable, and whether the
stability depends on N.

(iii) Whether the decentralized control law designed is asymp-
totically optimal almost surely or in probability. If the an-
swer is affirmative, what is the convergence rate of the
sub-optimal index of each agent to the optimal value, as
N → ∞.

In Section 4, the properties of the closed-loop system will be
analyzed so as to answer these questions.

4. Closed-loop system analysis

For the closed-loop analysis, we need the following lemma.

Lemma 4.1. Let A ∈ Rm×m and D ∈ Rm×d , {W(t),Ft } be a
d-dimensional martingale difference sequence, satisfying

sup
t �0

E[‖W(t)‖2|Ft−1] < ∞ a.s.,

lim
n→∞

1

n

n∑
t=0

W(t)WT(t) = RW a.s.,

where RW ∈ Rd×d is a d-dimensional non-negative definite
matrix. If �(A) < 1, then the solution of the following stochastic
difference equation:

X(t + 1) = AX(t) + DW(t + 1) (14)

satisfies

lim
n→∞

1

n

n∑
t=0

X(t)XT(t) =
∞∑

k=0

AkDRWDT(Ak)T a.s. (15)

Proof. See Appendix A.

Theorem 4.1. For system (1), if Assumptions (A1)–(A2) hold,
then under the control law (12), the closed-loop system has the
following properties:

lim
n→∞

1

n

n∑
t=0

‖�N(t)‖2 ��1N a.s., (16)

lim
N→∞ lim

n→∞
1

n

n∑
t=0

‖�N(t)‖2 = 0 a.s., (17)

where �N(t), R�, � are given in (13), (2), (1), respectively, and

�1N = m‖R�‖‖(Im − ��T)−1‖
N

.
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Proof. By (13) and (11) one can get

�N(t + 1) = ��N(t) + 1

N

N∑
j=1

	j (t + 1). (18)

We first prove that

lim
n→∞

1

n

n∑
t=1

	i (t)	
T
j (t) = 0 a.s., i 	= j . (19)

Denote 	̃j (t) = 	j (t − 1), Fij
t = �(Fi

t ∪ F
j
t−1). Then, from

Assumption (A1), both {	i (t),F
ij
t } and {	̃j (t),F

ij
t } are mar-

tingale difference sequences, satisfying

sup
t �0

E[‖	̃j (t)‖2|Fij
t−1] < ∞ a.s.

This together with Lemma 2.1 implies that

lim
n→∞

1

n

n∑
t=1

	i (t)	
T
j (t) = lim

n→∞
1

n

n∑
t=1

	i (t)	̃
T
j (t + 1)

= lim
n→∞

1

n
O(n1/2+�) = 0 a.s.

Hence, (19) holds. Furthermore, by (2), we have

lim
n→∞

1

n

n∑
t=0

⎛⎝ 1

N

N∑
j=1

	j (t)

⎞⎠⎛⎝ 1

N

N∑
j=1

	j (t)

⎞⎠T

= 1

N
R� a.s.,

which together with (18) and Lemma 4.1 leads to

lim
n→∞

1

n

n∑
t=0

‖�N(t)‖2 = 1

N
tr

( ∞∑
k=0

�kR�(�k)T

)

� m�max(R�)

N

∥∥∥∥∥
∞∑

k=0

�k(�k)T

∥∥∥∥∥
= m‖R�‖‖(Im − ��T)−1‖

N
a.s.

Thus, (16) and (17) are true. �

Remark 5. Theorem 4.1 characterizes the estimation accuracy
of f ∗ as an estimate of the PSA. In Li and Zhang (2007a),
the error between the closed-loop PSA (1/N)

∑N
j=1 y0

j and its

estimate y∗ is measured by (lim supT →∞ (1/T )
∫ T

0 ‖y∗(t) −
(1/N)

∑N
j=1 y0

j (t)‖2 dt)1/2. Here, since all the signals consid-
ered are discrete-time sequences, we can construct a linear
space

lPb =
{

x

∣∣∣∣∣lim sup
n→∞

1

n

n∑
t=0

‖x(t)‖2 < ∞
}

,

which is the family of all the sequences with finite power
average. Define an equivalence relationship on lPb denoted

by ∼: for any x, y ∈ lPb, x ∼ y, if and only if,

lim sup
n→∞

1

n

n∑
t=0

‖x(t) − y(t)‖2 = 0.

Denote the equivalent class of x by [x], and define a norm on
the quotient space lPb/ ∼:

‖[x]‖Pb�
(

lim sup
n→∞

1

n

n∑
t=0

‖x(t)‖2

)1/2

, ∀[x] ∈ lPb.

Then, it can be shown that (lPb/ ∼, ‖ · ‖Pb) is a normed space.
Theorem 4.1 tells us that limN→∞ ‖�N(t)‖Pb = 0 with proba-
bility 1. Namely, along with the increasing of N, the estimation
error of the PSA converges to zero in the sense of ‖ · ‖Pb-norm
almost surely. Thus, we say f ∗(t) is a strongly consistent esti-
mate of the PSA in the sense of long term average or ‖ · ‖Pb-
norm, with the convergence rate O(1/N).

Remark 6. From the point of view of decentralized control
law design, f ∗ can be regarded as the estimate of the PSA.
On the other hand, it characterizes the macroscopic behavior.
Since the individual states and PSA are coupled nonlinearly in
the performance indexes, complex macroscopic behaviors may
emerge. A concrete example for this phenomenon will be given
in Section 5.

Theorem 4.2. For system (1), if Assumptions (A1)–(A2) hold,
and the solution of the nonlinear iteration x(t + 1) = 
(x(t))

with x(0)=x0 is bounded, then under the control law (12), the
closed-loop system satisfies

sup
N �1

max
1� i �N

lim sup
n→∞

1

n

n∑
t=0

‖xN
i (t)‖2 < ∞ a.s. (20)

Proof. By (13), Theorem 4.1, Assumption (A1) and Lemma
2.1, we have

lim sup
n→∞

1

n

n∑
t=0

‖xN
i (t + 1)‖2

= lim sup
n→∞

1

n

n∑
t=0

‖
(f ∗(t)) + ��N(t)‖2

+ lim
n→∞

1

n

n∑
t=0

‖	i (t)‖2

�2� + 2‖�‖2�1N + tr(R�) a.s.,

where

� = lim sup
n→∞

1

n

n∑
t=0

‖f ∗(t)‖2.

Noticing that �1N =O(N−1) and �, R� and � are independent
of N, i, we have (20). �

Remark 7. Theorem 4.2 tells us that, if some condition on the
nonlinear function 
(·) is satisfied, then under the decentralized
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control law designed, the closed-loop system is stable almost
surely, and the stability is uniform with respect to N, that is,
there exists A ∈ F, P(A)=1, and a non-negative finite random
variable C(	) independent of N, i, such that

lim sup
n→∞

1

n

n∑
t=0

‖xN
i (t)‖2 �C(	), ∀	 ∈ A.

Hence, the closed-loop stability is retained with probability 1
even if N becomes arbitrarily large. The upper bound C(	) of
lim supn→∞ (1/n)

∑n
t=0 ‖xN

i (t)‖2 is dependent on the nonlin-
ear function in their group-tracking-type indexes, but indepen-
dent of N.

Theorem 4.3. For system (1) with index (3), if Assumptions
(A1)–(A2) hold and 
(·) is Hölder continuous with exponent
� ∈ (0, 1] in the sense that there exists a constant � > 0 such
that ‖
(x) − 
(y)‖��‖x − y‖�, ∀x, y ∈ Rm, then under the
control law (12), the corresponding index group satisfies

JN
i (u0

i , u
0−i )� tr(R�) + �N a.s., i = 1, 2, . . . , N , (21)

where

�N = 2�2(�1N)� + 2‖�‖2�1N .

Proof. By Assumption (A1), (3) and (13) we have

JN
i (u0

i , u
0−i ) = lim sup

n→∞
1

n

n∑
t=0

‖
(f ∗(t)) − 
(xN(t))

+ ��N(t) + 	i (t + 1)‖2

� tr(R�) + IN
1 + IN

2 , (22)

where

IN
1 = lim sup

n→∞
1

n

n∑
t=0

‖
(f ∗(t)) − 
(xN(t)) + ��N(t)‖2, (23)

IN
2 = 2 lim sup

n→∞
1

n

n∑
t=0

[
(f ∗(t)) − 
(xN(t))

+ ��N(t)]T	i (t + 1). (24)

From the condition of the theorem, Jensen inequality (Chow &
Teicher, 1997) and Theorem 4.1, it follows that

IN
1 �2 lim sup

n→∞
1

n

n∑
t=0

‖
(f ∗(t)) − 
(xN(t))‖2 + 2‖�‖2�1N

�2�2 lim sup
n→∞

1

n

n∑
t=0

‖�N(t)‖2� + 2‖�‖2�1N

�2�2

(
lim sup

n→∞
1

n

n∑
t=0

‖�N(t)‖2

)�

+ 2‖�‖2�1N

�2�2(�1N)� + 2‖�‖2�1N . (25)

This together with (24) and Lemma 2.1 leads to IN
2 = 0 a.s.

Therefore, by (22) and (25) one can get (21). �

Remark 8. From Theorem 4.3, the decentralized control law
(12) is sub-optimal, and the maximum error between the sub-
optimal index values and the optimal one

�NJ ∗� max
1� i �N

JN
i (u0

i , u
0−i ) − tr(R�) (26)

satisfies

�NJ ∗ ��N . (27)

Thus, the performance index of each agent is almost surely
asymptotically optimal with the convergence rate O(1/N�), as
N → ∞.

This theorem implies that the sequence of control groups
{UN={u0

i , 1� i�N}, N �1} is an almost sure asymptotic Nash
equilibrium with respect to the corresponding sequence of index
groups.

In Theorem 4.3, under the condition of �-Hölder continuity
on 
(·), the control law designed is shown to be almost surely
asymptotically optimal. When the nonlinear function 
(·) is
only locally Lipschitz continuous, to get asymptotic optimal-
ity of the decentralized control law, we need the following as-
sumption:

(A3) The martingale difference sequences {{	i (t),F
i
t }, i�1}

in model (1) satisfy

sup
i �1

E

(
lim sup

t→∞
‖	i (t)‖2

)
< ∞.

Theorem 4.4. For system (1) with index (3), if Assumptions
(A1)–(A3) hold, the solution of the nonlinear iteration x(t +
1) = 
(x(t)) with x(0) = x0 is bounded, and for any given
R > 0, there exists �R > 0 such that ‖
(x) − 
(y)‖��R‖x −
y‖, ∀‖x‖�R, ‖y‖�R, then under the control law (12), the
corresponding index group satisfies:

lim
N→∞ P {�NJ ∗ > �̃N } = 0, (28)

where �NJ ∗ is defined by (26),

�̃N = 2�2
R0

(�1N)� + 2‖�‖2�1N ,

and R0 is a constant independent of N.

Proof. See Appendix B.

Remark 9. Under the conditions of Theorem 4.4, by the defi-
nition of �̃N , it is known that for any given � > 0, � > 0, there
exists N1 > 0 such that �̃N < �, ∀N > N1. Furthermore, by (28),
there exists N2 > 0, such that

P {�NJ ∗ > �̃N }��, ∀N �N2.

Thus, we have

P {�NJ ∗ ��}��, ∀N � max{N1, N2}.
From the Definition 2.2, we know that the sequence of control
groups {UN = {u0

i , 1� i�N}, N �1} is an asymptotic Nash



Author's personal copy

720 T. Li, J.-F. Zhang / Automatica 44 (2008) 713–725

equilibrium in probability with respect to the corresponding
sequence of index groups.

Remark 10. If {{	i (t),F
i
t }, i�1} is uniformly bounded,

namely, there exists a constant M > 0, such that supi �1
supt �0 ‖	i (t)‖�M , then Assumption (A3) holds.

In some applications, the agents may start the estimate of
the PSA with false assumptions on x0. For instance, due to the
limitation of numerical precision, there may be small errors be-
tween x0 and the initial value of the estimate of each agent. This
naturally leads to some interesting questions: given a bound on
initial value errors, what can we conclude on the general be-
havior of the MAS? Under what conditions is the decentralized
control law based on NCE principle still asymptotically opti-
mal (as N increases to infinity)? Below we will discuss these
questions. In this case, instead of (12), the control law for the
ith agent should be given by

u0
i (t) = 
(fi(t)) − gi(x

N
i (t), t) − �fi(t), (29)

where fi(t) is generated by

fi(t + 1) = 
(fi(t)), t �0, fi(0) = fi0. (30)

In the following analysis, �N�max1� i �N ‖fi0 − x0‖ denotes
the maximum error of the initial values. We assume that

(A4) There exist constants C� �0, r� > 0, such that for any
initial value x(0) satisfying ‖x(0)− x0‖�r�, the solution x(t)

of the nonlinear iteration x(t + 1)=
(x(t)) starting from x(0)

has the following property:

lim sup
t→∞

‖x(t) − f ∗(t)‖�C�,

where f ∗(t) is the solution of (11) with initial value f ∗(0)=x0.

Remark 11. If 
(x) is a bounded function, then Assumption
(A4) holds. In addition, if f ∗(t) is an attractive solution of
nonlinear iteration x(t + 1) = 
(x(t)), then Assumption (A4)
holds. In this case, C� = 0, r� represents the radius of the
attractive domain.

We have the following theorems, whose proofs are similar
to those of Theorems 4.2–4.4, and so, omitted here.

Theorem 4.5. For system (1), suppose Assumption (A4) and
the conditions of Theorem 4.2 hold. If the maximum error �N of
the initial values satisfies �N �r�, then under the control law
(29)–(30), the closed-loop system has the following property:

max
1� i �N

lim sup
n→∞

1

n

n∑
t=0

‖xN
i (t)‖2 �M1 a.s., N = 1, 2, . . . ,

where M1 is a positive constant independent of N.

Remark 12. This theorem is concerned with the closed-loop
stability, and tells us that, if the maximum error between x0 and
the initial value of the estimate of each agent is not too large,
then under some conditions and the control law (29)–(30), the

closed-loop system is stable almost surely, and the stability is
uniform with respect to N.

Theorem 4.6. For system (1), suppose Assumption (A4) and
the conditions of Theorem 4.3 hold. If the maximum error �N

of the initial values satisfies �N �r�, then under the control
law (29)–(30), the corresponding index group has the following
property:

JN
i (u0

i , u
0−i )� tr(R�) + 
1N a.s., i = 1, 2, . . . , N ,

where


1N = 2�2(4C2
� + �2N + 2C�‖�‖√�1N)�

+ 2‖�‖2(4C2
� + �2N + 2C�‖�‖√�1N)

= O(1), N → ∞,

�2N = m‖R�‖(‖�‖2‖(Im − ��T)−1‖ + 1)

N

= O(N−1), N → ∞.

Theorem 4.7. For system (1), suppose Assumption (A4) and
the conditions of Theorem 4.4 hold. If the maximum error �N

of the initial values satisfies �N �r�, then under the control
law (29)–(30), the corresponding index group has the following
property:

lim
N→∞ P {�NJ ∗ > 
2N } = 0,

where �NJ ∗ is defined by (26),


2N = 2�2
R1

(4C2
� + �2N + 2C�‖�‖√�1N)�

+ 2‖�‖2(4C2
� + �2N + 2C�‖�‖√�1N)

= O(1), N → ∞,

and R1 is a constant independent of N.

Remark 13. Theorems 4.6–4.7 are concerned with the asymp-
totic optimality of the control law (29)–(30). They says that,
if the maximum error between x0 and the initial value of
the estimate of each agent is not too large, then the con-
trol law is sub-optimal. Under the conditions of Theorem 4.6
(Theorem 4.7), the maximum error between the sub-optimal in-
dex values and optimal one is bounded almost surely (in prob-
ability) as N increases to infinity. Especially, if C� = 0, then

1N (
2N) = O(N−�) and the control law (29)–(30) is asymp-
totically optimal almost surely (in probability).

5. Numerical examples

In this section, two numerical examples are given to verify
the asymptotic optimality of the decentralized control law de-
signed when the nonlinear coupling function 
 is globally
Lipschitz continuous or locally Lipschitz continuous, respec-
tively. In addition, the second example is also used to show the
emergent complex population behavior and the consistency of
the estimate for the PSA.
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Fig. 1. Curves of �NJ ∗, �NJ∗ with respect to N.

Example 1. The dynamic equation for the ith agent is given by

xN
i (t + 1) = 0.8xN

i (t) + uN
i (t) + 0.5xN(t) + 	i (t + 1),

where the initial value xN
i (0) has the normal distribution

N(5, 0.5), {	i (t), t �0} is a sequence of Gaussian white noise
with distribution N(0, 1), that is, � = 0.5, R� = 1. The nonlin-
ear coupling function in the indexes is 
(x) = 5 sin(x) + 10.

By (12), the decentralized controllers can be taken as

u0
i (t) = 5 sin(f ∗(t)) + 10 − 0.8xN

i (t) − 0.5f ∗(t), (31)

where f ∗(t) is iteratively given by

f ∗(t + 1) = 5 sin(f ∗(t)) + 10, t �0, f ∗(0) = 5.

Since |d
(x)/dx|�5, 
(·) is global Lipschitz continuous
(Hölder continuous with exponent 1), and the Lipschitz con-
stant � can be taken as 5.

Letting the number of agents N increase from 1 to 100, we
have the variation of the index differences �NJ ∗, �NJ∗ shown
in Fig. 1. Here, �NJ ∗ is defined by (26), and

�NJ∗� min
1� i �N

JN
i (u0

i , u
0−i ) − tr(R�).

From Fig. 1, the following properties of the sequence of index
groups can be seen:

(i) When N → ∞, both max1� i �N JN
i (u0

i , u
0−i ) and

min1� i �N JN
i (u0

i , u
0−i ) converge to 1 (=tr(R�)). This

indicates that the decentralized control (31) is asymptoti-
cally optimal.

(ii) Curve (�NJ ∗)−1 has a larger slope than that of curve
0.0149N , that is,

�NJ ∗ � 2(�2 + �2)R�

N(1 − �2)
= 67.1141

N
.

This indicates that both (21) and (27) hold.
(iii) Both �NJ ∗ and �NJ∗ have the order O(1/N), or the per-

formance index of each agent is convergent to the optimal
value with the rate O(1/N).

Example 2. The parameters of all agents are taken the same
values as in Example 1, except that xN

i (0) has the normal dis-
tribution N(0.5, 0.1) and {	i (t), t �0} is a sequence of white
noise with the uniform distribution on [−1, 1]. The nonlinear
coupling function in the performance indexes is 
(x) = x(1 +
2.99(1 − x)).
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Fig. 3. Curves of �NJ ∗ with respect to N.

Letting the number of agents N = 100, the curves of f ∗, xN

with respect to t are shown in Fig. 2. The error between f ∗
and xN can be quantitatively characterized by Theorem 4.1:
the estimation error in the long term averaged sense is equal

to 0.0667 (=
√

tr(R�)/N(1 − �2)). So, when the number of
agents is sufficiently large, the trajectory of the PSA is almost
identical to f ∗. In addition, the variation of the performance
index differences �NJ ∗ with respect to N is shown in Fig. 3,
from which, it can be seen that the index values of agents
converge to the optimal value tr(R�) as N increases to infinity.

6. Concluding remarks

A decentralized tracking-type game has been considered in
this paper for a class of MAS, in which the individual agent

and the overall population interact via dynamics and perfor-
mance indexes. The information available for each agent’s con-
trol design is local, and so, the control is decentralized. The
control is designed based on the NCE principle: the estimate
of the PSA is first given, and then, used as if it is the real
PSA. By probability limit theory, the following three prop-
erties have been obtained: strong consistency of the estimate
of the PSA, almost surely uniform stability of the closed-
loop system, and asymptotic optimality in the sense of Nash
equilibrium of the decentralized controls. It is shown that:
(a) when the nonlinear coupling function in the indexes is
Hölder continuous with exponent �, the decentralized control
law is asymptotically optimal almost surely, and the perfor-
mance index of each agent converges to the optimal value al-
most surely with the rate O(1/N�); (b) when the function is
locally Lipschitz continuous, the decentralized control law is
asymptotically optimal in probability, and the probability for
the individual performance to exceed its corresponding optimal
value by any given small positive quantity converges to zero,
as N → ∞.

For MAS control, there are a lot of problems worth in-
vestigating, including optimal control of the case where the
control energies of the agents are incorporated in the perfor-
mance indexes, and adaptive control of the case where un-
known parameters or unmodeled dynamics appear. How to
exploit the learning ability of agents (Panait & Luke, 2005)
to adaptively improve the models and system performances
in a distributed way is also an important issue to be studied
for MAS.

Acknowledgments

The research of Tao Li and Ji-Feng Zhang was supported by
the National Natural Science Foundation of China under grants
60221301, 60674038.

The authors are indebted to the anonymous reviewers for
their insightful comments.



Author's personal copy

T. Li, J.-F. Zhang / Automatica 44 (2008) 713 – 725 723

Appendix A. Proof of Lemma 4.1

Proof. From �(A) < 1 we know that the algebraic Lyapunov
equation P =ATPA+Im has a unique positive definite solution
P =∑∞

k=0 (Ak)TAk �Im. From (14) we have

XT(t + 1)PX(t + 1)

= XT(t)ATPAX(t) + WT(t + 1)DTPDW(t + 1)

+ 2XT(t)ATPDW(t + 1)

= XT(t)(P − Im)X(t) + WT(t + 1)DTPDW(t + 1)

+ 2XT(t)ATPDW(t + 1).

Summing both sides of the above equation from t =0 to n gives

XT(n + 1)PX(n + 1)

= XT(0)PX(0) +
n∑

t=0

WT(t + 1)DTPDW(t + 1)

−
n∑

t=0

‖X(t)‖2 + 2
n∑

t=0

XT(t)ATPDW(t + 1).

This together with (14) and Lemma 2.1 leads to
n∑

t=0

‖X(t)‖2 �
n∑

t=0

WT(t + 1)DTPDW(t + 1) + XT(0)PX(0)

+ 2
n∑

t=0

XT(t)ATPDW(t + 1)

= XT(0)PX(0) + O

(
n∑

t=0

‖X(t)‖2

)1/2+�

+ O(n) a.s. ∀� > 0.

Therefore,
n∑

t=0

‖X(t)‖2 = O(n) a.s. (A.1)

By (14) we have

X(t + 1)XT(t + 1)

= AX(t)XT(t)AT + DW(t + 1)XT(t)AT

+ AX(t)WT(t + 1)DT + DW(t + 1)WT(t + 1)DT.

This together with (A.1), (14) and Lemma 2.1 gives

lim sup
n→∞

1

n

n∑
t=0

X(t)XT(t)

= A

(
lim sup

n→∞
1

n

n∑
t=0

X(t)XT(t)

)
AT + DRWDT a.s.,

lim inf
n→∞

1

n

n∑
t=0

X(t)XT(t)

= A

(
lim inf
n→∞

1

n

n∑
t=0

X(t)XT(t)

)
AT + DRWDT a.s.

So, by �(A) < 1, (15) holds. �

Appendix B. Proof of Theorem 4.4

Proof. From the conditions of the theorem it follows that

lim sup
N→∞

1

N

N∑
j=1

E

(
lim sup

t→∞
‖	j (t)‖

)
< ∞,

and supt �0 ‖f ∗(t)‖ < ∞. By �(�) < 1, there exists two con-
stants c1 > 0, c2 > 0 and norm ‖ · ‖�, such that ‖�‖� < 1, and
c1‖ · ‖�‖ · ‖� �c2‖ · ‖.

From (18), we have

lim sup
t→∞

‖�N(t)‖� � 1

1 − ‖�‖�
lim sup

t→∞

∥∥∥∥∥∥ 1

N

N∑
j=1

	j (t)

∥∥∥∥∥∥
�

and

lim sup
t→∞

‖�N(t)‖� c2

c1(1 − ‖�‖�)
lim sup

t→∞

∥∥∥∥∥∥ 1

N

N∑
j=1

	j (t)

∥∥∥∥∥∥ .

(B.1)

Take a constant R0 such that

R0 > sup
t �0

‖f ∗(t)‖

+
⎡⎣c2 lim sup

N→∞
1

N

N∑
j=1

E

(
lim sup

t→∞
‖	j (t)‖

)⎤⎦
× [c1(1 − ‖�‖�)]−1. (B.2)

Denote �0 =R0 − supt �0‖f ∗(t)‖ and BN ={lim supt→∞‖�N

(t)‖ < �0}. Then, by (B.1) we have

P {� − BN }

�P

⎧⎨⎩ 1

N

N∑
j=1

lim sup
t→∞

‖wj(t)‖� c1(1 − ‖�‖�)�0

c2

⎫⎬⎭
�P

⎧⎨⎩
∣∣∣∣∣∣ 1

N

N∑
j=1

lim sup
t→∞

‖wj(t)‖− 1

N

N∑
j=1

E lim sup
t→∞

‖wj(t)‖
∣∣∣∣∣∣

+ 1

N

N∑
j=1

E lim sup
t→∞

‖wj(t)‖� c1(1 − ‖�‖�)�0

c2

⎫⎬⎭ . (B.3)

By (B.2), there exist �0 > 0, N�0 > 0, such that

c1(1 − ‖�‖�)�0

c2
− 1

N

N∑
j=1

E lim sup
t→∞

‖wj(t)‖ > �0,

∀N �N�0 . (B.4)

Then, from (B.3) and (B.4) it follows that

P {� − BN }

�P

⎧⎨⎩
∣∣∣∣∣∣ 1

N

N∑
j=1

(
lim sup

t→∞
‖wj(t)‖

−E lim sup
t→∞

‖wj(t)‖
) ∣∣∣∣∣∣ ��0

⎫⎬⎭ , N �N�0 . (B.5)
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By Assumption (A3) and Lemma 2.1, we have

lim
N→∞

1

N

N∑
j=1

(
lim sup

t→∞
‖wj(t)‖−E lim sup

t→∞
‖wj(t)‖

)
= 0 a.s.,

which together with (B.5) leads to

lim
N→∞ P(BN) = 1. (B.6)

Denote �0 = {limn→∞(1/n)
∑n

t=0 ‖�N(t)‖2 ��1N }. Then, by
Theorem 4.1 we have P(�0) = 1. By the definition of BN , we
know that for any 	 ∈ �0 ∩ BN , there exists n0(	) > 0, such
that ‖�N(t)‖ < �0, ∀t �n0(	). Thus,

‖xN(t)‖� sup
t �0

‖f ∗(t)‖ + �0

= R0, ∀t �n0(	), ∀	 ∈ �0 ∩ BN .

This together with the conditions of the theorem gives

‖
(xN(t)) − 
(f ∗(t))‖
��R0

‖�N(t)‖, ∀t �n0(	), ∀	 ∈ �0 ∩ BN .

Therefore, by the definition of �0 and Jensen inequality, we
have

lim sup
n→∞

1

n

n∑
t=0

‖
(f ∗(t)) − 
(xN(t))‖2

= lim sup
n→∞

1

n

⎧⎨⎩
n0(	)−1∑

t=0

‖
(f ∗(t)) − 
(xN(t))‖2

+
n∑

t=n0(	)

‖
(f ∗(t)) − 
(xN(t))‖2

⎫⎬⎭
= lim sup

n→∞
1

n

n∑
t=n0(	)

‖
(f ∗(t)) − 
(xN(t))‖2

��2
R0

lim sup
n→∞

1

n

n∑
t=0

‖�N(t)‖2�

��2
R0

(
m‖R�‖‖(Im − ��T)−1‖

N

)�

, ∀	 ∈ �0 ∩ BN .

Noticing that P(�0) = 1, by the above inequality, (23) and
Theorem 4.1 one can get

IN
1 (	)� �̃N, a.a. 	 ∈ BN . (B.7)

Furthermore, from (24) and Lemma 2.1 we have

IN
2 (	) = lim sup

n→∞
1

n
O(n1/2+�) = 0, a.a. 	 ∈ BN .

This together with (22) and (B.7) leads to

�NJ ∗ � �̃N, a.a. 	 ∈ BN

and

P {�NJ ∗ � �̃N }�P(BN).

Combing this with (B.6) gives (28). �
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